Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Antiviral Res ; 209: 105475, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2240582

RESUMEN

SARS-CoV-2 is the causative agent of the immune response-driven disease COVID-19 for which new antiviral and anti-inflammatory treatments are urgently needed to reduce recovery time, risk of death and long COVID development. Here, we demonstrate that the immunoregulatory kinase p38 MAPK is activated during viral entry, mediated by the viral spike protein, and drives the harmful virus-induced inflammatory responses. Using primary human lung explants and lung epithelial organoids, we demonstrate that targeting p38 signal transduction with the selective and clinically pre-evaluated inhibitors PH-797804 and VX-702 markedly reduced the expression of the pro-inflammatory cytokines IL6, CXCL8, CXCL10 and TNF-α during infection, while viral replication and the interferon-mediated antiviral response of the lung epithelial barrier were largely maintained. Furthermore, our results reveal a high level of drug synergism of both p38 inhibitors in co-treatments with the nucleoside analogs Remdesivir and Molnupiravir to suppress viral replication of the SARS-CoV-2 variants of concern, revealing an exciting and novel mode of synergistic action of p38 inhibition. These results open new avenues for the improvement of the current treatment strategies for COVID-19.

2.
Emerg Microbes Infect ; 11(1): 2160-2175, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1997031

RESUMEN

Pandemic outbreaks of viruses such as influenza virus or SARS-CoV-2 are associated with high morbidity and mortality and thus pose a massive threat to global health and economics. Physiologically relevant models are needed to study the viral life cycle, describe the pathophysiological consequences of viral infection, and explore possible drug targets and treatment options. While simple cell culture-based models do not reflect the tissue environment and systemic responses, animal models are linked with huge direct and indirect costs and ethical questions. Ex vivo platforms based on tissue explants have been introduced as suitable platforms to bridge the gap between cell culture and animal models. We established a murine lung tissue explant platform for two respiratory viruses, influenza A virus (IAV) and SARS-CoV-2. We observed efficient viral replication, associated with the release of inflammatory cytokines and the induction of an antiviral interferon response, comparable to ex vivo infection in human lung explants. Endolysosomal entry could be confirmed as a potential host target for pharmacological intervention, and the potential repurposing potentials of fluoxetine and interferons for host-directed therapy previously seen in vitro could be recapitulated in the ex vivo model.


Asunto(s)
COVID-19 , Pulmón , Infecciones por Orthomyxoviridae , Animales , Antivirales/farmacología , COVID-19/patología , Fluoxetina/farmacología , Humanos , Virus de la Influenza A/fisiología , Gripe Humana/patología , Interferones , Pulmón/virología , Ratones , Infecciones por Orthomyxoviridae/patología , SARS-CoV-2/fisiología , Técnicas de Cultivo de Tejidos , Replicación Viral
3.
J Cardiothorac Vasc Anesth ; 35(7): 1999-2006, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1035929

RESUMEN

OBJECTIVES: The authors evaluated the outcome of adult patients with coronavirus disease 2019 (COVID-19)-related acute respiratory distress syndrome (ARDS) requiring the use of extracorporeal membrane oxygenation (ECMO). DESIGN: Multicenter retrospective, observational study. SETTING: Ten tertiary referral university and community hospitals. PARTICIPANTS: Patients with confirmed severe COVID-19-related ARDS. INTERVENTIONS: Venovenous or venoarterial ECMO. MEASUREMENTS AND MAIN RESULTS: One hundred thirty-two patients (mean age 51.1 ± 9.7 years, female 17.4%) were treated with ECMO for confirmed severe COVID-19-related ARDS. Before ECMO, the mean Sequential Organ Failure Assessment score was 10.1 ± 4.4, mean pH was 7.23 ± 0.09, and mean PaO2/fraction of inspired oxygen ratio was 77 ± 50 mmHg. Venovenous ECMO was adopted in 122 patients (92.4%) and venoarterial ECMO in ten patients (7.6%) (mean duration, 14.6 ± 11.0 days). Sixty-three (47.7%) patients died on ECMO and 70 (53.0%) during the index hospitalization. Six-month all-cause mortality was 53.0%. Advanced age (per year, hazard ratio [HR] 1.026, 95% CI 1.000-1-052) and low arterial pH (per unit, HR 0.006, 95% CI 0.000-0.083) before ECMO were the only baseline variables associated with increased risk of six-month mortality. CONCLUSIONS: The present findings suggested that about half of adult patients with severe COVID-19-related ARDS can be managed successfully with ECMO with sustained results at six months. Decreased arterial pH before ECMO was associated significantly with early mortality. Therefore, the authors hypothesized that initiation of ECMO therapy before severe metabolic derangements subset may improve survival rates significantly in these patients. These results should be viewed in the light of a strict patient selection policy and may not be replicated in patients with advanced age or multiple comorbidities. CLINICAL TRIAL REGISTRATION: identifier, NCT04383678.


Asunto(s)
COVID-19 , Oxigenación por Membrana Extracorpórea , Síndrome de Dificultad Respiratoria , Adulto , Femenino , Humanos , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/terapia , Estudios Retrospectivos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA